

Flexible Resources Initiative of the U.S.-India Clean Energy Finance Task Force

Least-Cost Pathway for India's Power System Investments through 2030

Dr. Nikit Abhyankar

Lawrence Berkeley National Laboratory

27th April 2023

Publication of the Least Cost Power System Studies at the State Level

Flexible Resources Initiative (FRI) National Study Overview

What did we do?

- Assess a least-cost resource mix for the Indian power sector up to 2030
- Comprehensive system expansion and hourly operational modeling at individual power plant level using PLEXOS
- Identify concrete policy / regulatory solutions

What did we find ?

- The least cost pathway by 2030 includes 464 GW of RE + flexible resources:
 63GW (252 GWh) energy storage, 60GW load shifting, flex operation of 25 GW gas,
 >140GW new interstate transmission, & national wholesale electricity markets
- 23 GW of net addition to the coal capacity by 2030 (may be higher in case RE/storage costs do not drop or deployment barriers)
- Average electricity price reduces by 8-10% between 2020 and 2030
- CO₂ emissions intensity of power generation reduces by 43-50% from 2020 level
- Unlikely to lead to job losses in the coal sector in near to medium term
- Need significant policy / regulatory interventions (resource adequacy framework, storage regulations, capacity markets, wider/deeper energy markets)

What are the implications?

A least-cost pathway to achieving PM Modi's 500GW clean energy target at COP-26

Solar & wind are the cheapest resources in India

- India has achieved some of the lowest solar and wind prices in the world.
- Solar LCOE has reduced by 85% in the last 10 years
- Solar PPA prices in 2020-21: ~Rs 2/kWh, which is lower than the variable cost of ~100 GW of existing coal assets

- Battery prices have dropped by ~90% in the last 10 yrs
- In FY 2022, battery storage capital cost (global avg) is ~Rs 6.5 Cr/MW (4-hour)

Levelized wind auction tariffs

Levelized solar auction tariffs

Source: BloombergNEF. Note: Representative 'inflation-linked' tariffs are shown.

Source: BNEF (2020)

→ By 2025-2030 Solar + 30% energy storage would cost ~Rs 3.0-3.5/kWh, nominally flat for 20 yrs.

The Primary Least Cost Pathway

- RE = 465GW (non fossil = 545 GW)
- Net coal capacity addition = 23 GW
- Energy storage = 63 GW/252 GWh

- Between 2020 and 2030, as the load nearly doubles, coal generation increases only by ~10%.
- Non-fossil sources provide ~50% of energy generation by 2030
- Emissions intensity of electricity generation reduces by 43%

Primary Least Cost pathway would reduce electricity costs by 8% from 2020 levels

- The average cost of electricity generation decreases by 8% from 2020 levels (Primary Least Cost case).
- If RE and storage prices decline faster in line with the recent global trends the average cost of generation drops by 10% (Low RE Cost case).

Why?

- New solar / wind PPA prices would be lower than even the marginal cost of several coal power plants
- Solar / wind /storage PPA prices are fixed in nominal terms making a huge portion of power procurement inflation proof.

Is the grid dependable? (e.g. Primary Least Cost Pathway)

National Dispatch During Peak Net Load Week (FY 2030)

Chart shows results from simulating the hourly power plant level dispatch (8760 hours x \sim 2,500 generation units x 75 interstate transmission corridors) during the highest net load week in FY 2030.

Net Load Peak (National) = 307 GW on Oct 13 at 7:00 PM

Coal and Nuclear generate at near full load:

Coal = 175 GW Nuclear = 13 GW

Supply side FRs play a crucial role in meeting the net load peak

Storage = 60 GW (diurnal balancing)
Gas = 22 GW (seasonal balancing)
Hydro = 40 GW (incl small hydro)

How much storage is required and how is it operated?

Average charge (negative) and discharge (positive) operation of energy storage in FY 2030 (Primary Least Cost case)

Optimal energy storage requirement (All-India)

2025	2027	2030
12 GW/	31 GW/	63 GW/
48 GWh	125 GWh	252 GWh

Batteries mainly charge during the day and discharge during evening and morning peak hours (4-6 hours/day).

Storage would be a critical source of flexibility starting as early as 2023, especially in states with high solar deployment and low hydro resources such as Rajasthan, Madhya Pradesh, Gujarat etc.

Policy & regulatory measures would be required to achieve least-cost pathway

Power system changes combined with existing regulatory practices could pose challenges for meeting future load reliably and cost effectively:

- Changing load shape and variable supply
- States procuring resources to meet individual state level peak demand
- Low utilization of assets; limited sharing of resources

Capacity assessment

- How much capacity is needed and when
- Determine contribution of all resources to firm capacity

Capacity sharing

- Streamline capacity sharing amongst states
- Leverage load and resource diversity

Integrate w/ planning & procurement

- Use capacity (RA)
 requirements as input
 to planning &
 procurement
- Deploy a portfolio approach to procurement

Resource Adequacy (RA) Framework

Click here for the report on the modeling study.

Click here for the report on regulatory recommendations.

Contact:

Dr. Nikit Abhyankar

Shruti Deorah

NAbhyankar@lbl.gov

SMDeorah@lbl.gov

Flexible Resources Initiative (FRI) National Study Overview

Context and Objective

- Current events and recent declines in RE and battery costs and gas prices, and electricity market reforms offer a unique opportunity to India to leapfrog to a more flexible, robust, and sustainable power system, in view of unexpected challenges and disruptions.
- LBNL assesses a least cost resource mix for India with a focus on key flexible resources ("FRs," e.g. energy storage like batteries / pumped hydro, gas, load shifting, hydro, and electricity markets) to support India's energy transition over the next decade
- PLEXOS, an industry standard tool, is used to:
 - Model optimal capacity expansion at the state level through 2030 and simulate hourly dispatch at the power plant level in 2030, over a range of scenarios on RE costs, gas prices, coal retirements, demand growth, electricity markets, supply chain challenges, etc.

Key Findings

- The least cost pathway up to 2030 consists of a combination of RE (~350-450 GW_{DC}) + FRs: 30-60GW energy storage, 60GW load shifting, flexible operation of 25 GW gas, >140GW of additional interstate/inter-regional transmission, and market-based economic dispatch (MBED)
- 23 GW of net addition to the coal capacity is cost-effective by 2030 (may be higher in case RE/storage costs do not drop or deployment barriers)
- The complementarity of FRs working in tandem is crucial for maintaining grid dependability in view of high RE penetration
- Study outcomes point to some key policy and regulatory strategies on resource adequacy

RE + Coal expansion will cause significant stress on thermal assets

RA framework integrated with state level procurement would ensure reliability while lowering costs

- National agency to issue standardized guidelines for load forecasting at Discom/state level; thereafter rolled up into a robust national load forecast
- National agency to conduct Reserve Margin Study to assess firm capacity requirements at national/state
 level; allocate RA requirements to states based on share of national coincident peak
- States to assess existing resources using capacity credits for all resource types, including renewables and battery storage
- Discoms/states to share capacity resources through short-term RA contracts (bilateral in near term, centralized capacity market in longer run)
- Discoms/states to conduct all-source procurement for new resources to arrive at least-cost portfolio;
 evaluate using engineering & economic tools
- Regulatory Commissions to ensure compliance with RA requirements using incentives and penalties